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Abstract—Cyclic logic locking is a cutting-edge hardware
security method developed to defend against SAT Attack. It
introduces cycles into the original circuit, which can cause the
circuit to either get trapped in an endless loop or generate
incorrect outputs if an incorrect key is used. Recently, a new
cyclic logic locking method called LOOPLock 2.0 was proposed.
Its primary feature is that the circuit retains its cyclic structure
regardless of whether the correct key vector is applied or not.
However, LOOPLock 2.0 can still be successfully attacked using
locking structure analysis in the state-of-the-art. As a result,
this paper presents a more robust cyclic logic locking approach
LOOPLock 3.0 to counteract state-of-the-art attacks. The ex-
perimental results validate the effectiveness of the proposed
approach.

I INTRODUCTION

As time goes by, Integrated Circuits are now getting more
and more complex. IC design companies encounter several
security risks, leading to the arising need for hardware security
techniques. Many protection techniques have been proposed
recently to address hardware security issues [5] [9] [10] [11]
[12] [13] [14] [17] [18] [19] [20] [21] [22] [23] [24] [26] [28]
[29] [39] [40] [42] [43] [44] [49] [50].

Logic locking [24] is a technique that introduces additional
logic gates with key inputs into the original circuit. The locked
circuit only functions correctly with the correct key vector.
Logic locking makes it difficult for attackers to understand
the design of an IC and even replicate it. However, most of
the logic locking methods are vulnerable to a multiplicity of
unlocking approaches [1] [2] [4] [8] [15] [16] [27] [30] [31]
[32] [33] [34] [35] [36] [37] [38] [41] [45] [46] [47] [48].

Boolean Satisfiability-based (SAT) Attack [38] shows its
power to unlock logic encrypted circuits. It obtains the cor-
rect key vector by pruning out all the incorrect key vectors
iteratively. At least one incorrect key vector can be found
when the circuit produces different outputs under a specific
input pattern and different key vectors. The input patterns that
can recognize incorrect key vectors are named distinguishing
input patterns (DIPs). As any DIP is observed, a constraint
of generating correct output under this DIP will be added
to the Conjunctive Normal Form (CNF) formula of this
circuit, thereby eliminating at least one incorrect key vector.
Therefore, once all the DIPs have been identified, the circuit
will function correctly with the remaining key vectors.
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Cyclic logic locking [29] is a method to counteract SAT
Attack. It introduces feedback loops into the circuits, which
causes statefulness or oscillation to the circuit under incorrect
key vectors. Statefulness refers to a situation in which different
outputs are created under a pair of identical input pattern and
key vector. Statefulness may cause the SAT Attack stuck in
an endless loop. Additionally, oscillation is another situation
in which some wires in the circuit oscillate. Oscillation may
lead to incorrect key vectors being returned by SAT Attack.

CycSAT [48] is proposed to attack cyclic logic locking
methods. It assumes the circuits are acyclic under the correct
key vector. Thus, it computes the non-cyclic (NC) condition
of a locked circuit by structural analysis on every cycle in the
circuit. By adding the NC condition into the CNF formula of
the encrypted circuit, the resulting CNF formula is bounded
to keeping the key vectors that will not provide cycles.

However, CycSAT cannot rule out all of the cycles. It cannot
break cycles with more than one feedback edge. Behavioral
SAT-based Attack (BeSAT) [32] is proposed to surmount
this shortcoming of CycSAT. Same as CycSAT, BeSAT first
computes the NC condition of the circuit. Additionally, it
applies SAT Attack and records DIPs that are identified. When
the SAT solver finds any DIP, BeSAT checks whether this
DIP has already appeared. If DIPs are found repeatedly, it
suggests the presence of statefulness. In such cases, the key
vector responsible for causing the DIP statefulness must be
eliminated. Subsequently, BeSAT utilizes a ternary-based SAT
method to prune key vectors that cause oscillation in any wire
of the circuit. BeSAT shows its success in breaking all of the
cycles in the locked circuit.

LOOPLock 2.0 [42] is a cyclic logic locking method that
can defend against SAT Attack, CycSAT, BeSAT, and Removal
Attacks simultaneously. It strengthens the security level of the
two locking structures proposed in LOOPLock [10], including
Type-I cycle pair and Type-II cycle pair. There are one
combinational cycle and one non-combinational cycle in each
cycle pair. Regardless of whether the key vector fed into the
encrypted circuit is correct or incorrect, one of the cycles will
be activated. Therefore, when the CycSAT and BeSAT try to
attack LOOPLock 2.0 by breaking every cycle, they will rule
out the correct key vectors though.

Although LOOPLock 2.0 presents an effective and efficient
cyclic logic locking method to resist attacks from logic unlock-
ing methods, it has been found to have some shortcomings.
It can be attacked by breaking all of the non-combinational
cycles in the state-of-the-art [4]. By propagating fault effects
and identifying the positions of the blocking node in cycle
pairs, the cycles that cause non-combinational effects in the
circuit can be recognized. These cycles can be ruled out by
replacing them with arbitrary constant values (0 or 1), which
will not change the functionality of the circuit. Then the
correct key can be obtained by applying SAT Attack. Thus, in
this paper, we propose a robust cyclic logic locking structure

979-8-3503-9354-5/24/$31.00 ©2024 IEEE

6C-1

594

20
24

 2
9t

h 
A

si
a 

an
d 

So
ut

h 
Pa

ci
fic

 D
es

ig
n 

A
ut

om
at

io
n 

C
on

fe
re

nc
e 

(A
SP

-D
A

C
) |

 9
79

-8
-3

50
3-

93
54

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
A

SP
-D

A
C

58
78

0.
20

24
.1

04
73

87
7

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply. 

http://crossmark.crossref.org/dialog/?doi=10.1109%2FASP-DAC58780.2024.10473877&domain=pdf&date_stamp=2024-04-03


Fig. 1. An example for LOOPLock 2.0. (a) The original circuit. (b) The
Type-I cycle pair. (c) The Type-II cycle pair.

LOOPLock 3.0, which is more resilient against attacks from
[4].

II PRELIMINARIES

A. LOOPLock 2.0

LOOPLock 2.0 [42] enhances the security level of
LOOPLock [10]. LOOPLock can be attacked by the unlocking
method proposed in [42]. It first collects the MUXes controlled
with the same key input. For ease of discussion, the MUX with
two feedback edges in a cycle pair, located on the left side,
is referred to as pre-MUX, while the other MUX controlled
by the same key input, located on the right side, is referred to
as post-MUX. The pre-MUX is considered as the location of
target node nt due to the structure of LOOPLock. Then, the
position of the blocking node nb can be found by its Blocking
Node Identification method [42]. After that, it distinguishes the
structural difference between Type-I and Type-II cycle pairs
by identifying if there is at least a PO located between nt and
nb. It collects the key values that select the combinational
cycles in the Type-I cycle pairs and the key values that select
the non-combinational cycles in the Type-II cycle pairs. These
key values are correct exactly.

Therefore, the main idea of LOOPLock 2.0 is to conceal
the structural difference between the Type-I and Type-II cycle
pairs. Fig. 1 is an example of LOOPLock 2.0. Fig. 1(b) shows
the example of the Type-I cycle pair. It inserts an additional
key gate M5 with an additional key input K3. The correct
key value is K3 = 1. The connection between n3 and y1 is
hidden and the wrong signal generated by a selected node n17
is propagated to y1 while K3 = 0. Besides, Fig. 1(c) shows
the example of the Type-II cycle pair. It inserts an additional
key gate M6 with an additional key input K4. The correct
key value is K4 = 1. While K4 = 0, a wrong path from
n11, which is located between nt and nb, is selected by M6
to y6. Due to the insertion of the additional key gates M5
and M6, the structural difference cannot be identified by the

unlocking method [42] to LOOPLock. Thus, the correct key
vector cannot be obtained.

III SHORTCOMINGS OF LOOPLOCK 2.0

LOOPLock 2.0 prevents attackers from distinguishing the
structural difference between the Type-I and Type-II cy-
cle pairs and then choosing the correct cycles. However,
LOOPLock 2.0 is still faced with some security concerns. In
this section, we discuss three shortcomings of LOOPLock 2.0
that may affect the security of the locked circuit.

1) The post-MUX in the Type-I cycle pair may post the
security concern on the locking structure.

2) In the Type-II cycle pair, if the shared key input is sep-
arated into two distinct key inputs, the locking structure
may be decrypted.

3) The non-combinational cycles and combinational ones
can still be distinguished since the position of the
blocking nodes nb can be found by [4].

For the first shortcoming, the Type-I cycle pair can resist
SAT Attack with the pre-MUX only. The post-MUX in the
Type-I cycle pair is just for it to be structurally similar to the
Type-II cycle pair. However, since LOOPLock 2.0 randomly
selects node for creating wrong path of the post-MUX, the
SAT solver could find DIPs that block the non-combinational
effect under the incorrect key input. It causes the wrong key
input to be pruned and the correct key input is found. For the
second shortcoming, the Type-II cycle pair is vulnerable to
CycSAT-II after splitting the shared key inputs of the pre-
MUX and post-MUX. CycSAT-II leaves the combinational
cycle in the circuit rather than ruling out all the cycles. Hence,
the Type-II cycle pair can be decrypted when the key inputs
of the pre-MUX and post-MUX are independent. For the last
shortcoming, the enhanced structures in LOOPLock 2.0 only
make two cycle pairs similar but do not hide the positions of
the blocking nodes nb. With this shortcoming, an attacking
approach to unlock LOOPLock 2.0 [4] is proposed.

IV THE PROPOSED LOCKING APPROACH
LOOPLOCK 3.0

A. LOOPLock 3.0

To elevate the strength of cyclic logic locking, we propose
a locking approach LOOPLock 3.0 in this subsection. Given
the original circuit in Fig. 1(a), the resultant locked circuit is
as shown in Fig. 2(e). In the following paragraphs, we will
introduce the construction method of our locking approach
with this circuit and the corresponding reasons.

To defend against SAT Attack, we keep the key gate M1 of
the Type-I cycle pair in LOOPLock 2.0, which contains a non-
combinational cycle L1 affecting POs and a combinational
cycle L2 restoring the correct functionality of the circuit.
Let us explain the construction of M1. Let n1 be the nt in
the original circuit. We first identify cyclic substitute node
(CSN) [3] and nb, which are n7 and n4, respectively. Then
we construct the key gate M1 of the Type-I cycle pair with a
feedback path from n7 and a feedback path from n3, which
is located between nt and nb. As a result, the observable non-
combinational effect can invalidate SAT Attack. The updated
circuit is as shown in Fig. 2(a).

Next, we use a key gate M3 with a key input K3 to hide
the position of nb for defending against the approach [4].
The yellow node n4 is the real nb while K3 = 1, and the
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Fig. 2. The steps of constructing the proposed LOOPLock 3.0. (a) Inserting
M1 of the Type-I cycle pair. (b) Inserting M3 for hiding nb of the Type-I
cycle pair. (c) Inserting M5 of the Type-III cycle pair. (d) Inserting M4 for
hiding nb of the Type-III cycle pair. (e) Inserting M2 for hiding the structural
difference between the Type-I and Type-III cycle pairs.

gray node n8 is used as a fake nb while K3 = 0. Let us
explain the construction of M3. After inserting M1, we use
the information of n4, which is nb in Type-I cycle pair, to find
the position for inserting M3. We observe that n4 will block
the fault effects since n2’s side input is assigned an input-
noncontrolling value (x1 = 0) when propagating the fault
effects from M1. However, x1 = 0 is an input-controlling
value to n4 such that n4 is nb. Based on this, the critical
structure is that n2 is prior to n4, and n2’s side input is
opposite to n4’s side input. To hide the relation between n2
and n4, we insert a key gate M3 in between n2 and n2’s side

input x1.

Furthermore, to create the wrong path of M3, we select a
node as a fake nb. Note that the fake nb can be a node before
or after the real nb. In Fig. 2(a), n8 is selected as the fake
nb for the Type-I cycle pair. To block the fault effects at n8
while K3 = 0, the wrong path of M3 needs to be opposite to
n8’s side input. Thus, we connect the wrong path of M3 to
x4. The updated circuit is as shown in Fig. 2(b). As a result,
if attackers assign x4 = 0 and K3 = 0 to propagate the fault
effects forward, n8’s side input will be an input-controlling
value and blocks the fault effects at n8. The reason why M3
can confuse attackers about the position of nb is that the fault
effects may be blocked at the fake nb, instead of the real nb

during the fault effect propagation. If attackers cannot confirm
the found nb is real, they are unable to distinguish between
non-combinational and combinational cycles correctly.

We further create a new structure called the Type-III cycle
pair using a key gate M5 sharing the same key input K1
as M1, and two non-combinational cycles L3 and L4, which
are unobservable at POs to invalidate CycSAT and BeSAT. Let
us explain the construction of M5. Let n9 be the nt in the
original circuit. We first find n12 as the nb by propagating
the fault effects from n9 and ensure that there exists no
path from any node between nt and nb to any PO. Then
we replace n9 with a key gate M5 and choose two nodes
between n9 and n12 to create feedback paths to M5 forming
two non-combinational cycles. The updated circuit is as shown
in Fig. 2(c). This structure will lead to a contradiction while
deriving the NC condition in CycSAT and BeSAT. This is
because non-combinational cycles are not allowed for these
attacking methods. As a result, the correct key vector cannot be
obtained. The detailed evaluation will be discussed in Section
IV-B.

We then use M4 to hide the position of nb in the Type-III
cycle pair. The yellow node n12 is the real nb while K4 = 1,
and the gray node n14 is used as a fake nb while K4 = 0.
We use the same strategy as constructing M3 to insert M4.
We first find n10, whose side input is opposite to n12’s side
input. Then we insert M4 between n10 and n10’s side input
to hide the relation between n10 and n12. Next, we select
n14 as a fake nb and connect the wrong path of M4 to x7
to block the fault effects at n14 while K4 = 0. The updated
circuit is as shown in Fig. 2(d).

Since both the non-combinational cycles in the Type-III
cycle pair do not affect the functionality of the circuit, we
just use the same key input K1 to control the Type-I and
Type-III cycle pairs. The green cycles in Fig. 2(d) will be
selected under the correct key value of K1 = 1, and the red
cycles will be selected as K1 = 0.

Another key gate M2 is inserted between n3 and y1, and
the wrong path for M2 is from a node between M5 and the
blocking node n12 of the Type-III cycle pair. M2 is used for
hiding the structural difference between the Type-I and Type-
III cycle pairs, and for propagating the non-combinational
effect in the Type-III cycle pair to the PO y1. The updated
circuit is as shown in Fig. 2(e). In the locking structure of our
approach, we only have the Type-I and Type-III cycle pairs
without Type-II cycle pair. Algorithm 1 shows the pseudo-code
of the proposed locking approach.
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Algorithm 1 Locking Approach

Input: Two sub-circuits C1 and C2.

Output: A locked circuit CL.

1: Find CSN and nb1 for a nt1 in C1;

2: Replace nt1 with the structure of pre-MUX in the Type-I

cycle pair;

3: CL1 ← Obfuscate the position of nb1 in C1;

4: Find CSN and nb2 for a nt2 in C2;

5: Replace nt2 with the structure of pre-MUX in the Type-III

cycle pair;

6: CL2 ← Obfuscate the position of nb2 in C2;

7: Return CL ← Hide the structural difference between CL1

and CL2;

B. Evaluation of LOOPLock 3.0

Here we explain how our locking approach defends against
the approach [4] with the example in Fig. 2(e). For the
first shortcoming, the post-MUX in the Type-I cycle pair of
LOOPLock 2.0 may lower the encryption strength. Since we
only keep the pre-MUX of the Type-I cycle pair to invalidate
SAT Attack, this shortcoming is vanished in our approach.

For the second shortcoming, LOOPLock 2.0 can be un-
locked by the method of key-splitting. Although we use the
shared key input K1 in our locking approach, it is still
effective against CycSAT and BeSAT even K1 is split into
two key inputs K11 and K12. The analysis is as follows:
We apply the same unlocking processes as in Section III to
the locked circuit in Fig. 2(e). First, we use two split key
inputs K11 to control M1, and K12 to control M5. Next, we
apply CycSAT-II on the modified circuit. Since CycSAT-II and
BeSAT use the same strategies to construct NC conditions, we
analyze the locked circuit against CycSAT-II, which avoids
non-combinational cycles. The NC conditions for the four
cycles, L1 ∼ L4, are shown in EQ(1).

NCL1 = K11 ∨ (K3 ∧ x1) ∨ (K3 ∧ x4) ∨ x2)

NCL2 = K11 ∨ (K3 ∧ x1) ∨ (K3 ∧ x4) ∨ x2 ∨ x1 ∨ x3)

NCL3 = K12 ∨ (K4 ∧ x5) ∨ (K4 ∧ x7) ∨ x6)

NCL4 = K12 ∨ (K4 ∧ x5) ∨ (K4 ∧ x7)

(1)

Note that these NC conditions are not added to the CNF
formula directly for SAT solving. CycSAT-II searches the
input vectors sensitizing any cycle, and then uses these input
vectors to simplify the NC conditions. The results are shown
in EQ(2).

NCL1(x1 = 0, x2 = 1, x4 = 0) = K11

NCL2(x1 = 1, x2 = 1, x3 = 0, x4 = 0) = K11 ∨K3

NCL3(x5 = 0, x6 = 1, x7 = 1) = K12

NCL4(x5 = 0, x7 = 1) = K12

(2)

Finally, the NC conditions for the four cycles are ANDed as
shown in EQ(3), which is the resultant NC condition appended
to the CNF formula. Appending the resultant NC condition
prevents the SAT solver from getting the correct key vector
due to the contradiction of K12 ∧ K12. Hence, CycSAT-II
fails to unlock our locking approach even with split key inputs.

NC = K11 ∧ (K11 ∨K3) ∧K12 ∧K12 = 0 (3)

For the last shortcoming, the position of nb is identifiable in

TABLE I
RESULTS OF OUR APPROACH IN IDENTIFYING ALL THE LOCKING

STRUCTURES.

Benchmark |PI|/|PO| |Node| |Type-I| |Type-III| |Lock|
aes core 789/659 21513 1844 228 228

b17 1454/1512 52920 126 392 126

b20 522/512 12219 66 129 66

b21 522/512 12782 60 135 60

b22 767/757 18488 98 197 98

C1908 33/25 414 8 24 8

C3540 50/22 1038 57 23 23

C432 36/7 206 12 16 12

C5315 178/123 1773 6 6 6

C7552 207/107 2074 18 27 18

dalu 75/16 1740 10 38 10

des area 368/192 4857 2 2 2

i10 257/224 2673 146 59 59

i2c 147/142 1306 2 8 2

i8 133/81 3310 67 73 67

mem ctrl 1198/1235 15641 176 173 173

pci brdge32 3521/3566 24369 45 142 45

pci spoci ctrl 85/73 1451 14 32 14

rot 135/107 1063 9 23 9

s13207 700/790 2719 11 62 11

s38417 1664/1742 9219 86 204 86

s38584 1464/1730 12400 31 133 31

s9234 247/250 1958 14 43 14

sasc 133/129 784 3 8 3

systemcaes 930/799 13054 35 138 35

tv80 373/391 9609 413 220 220

usb funct 1874/1867 15894 23 147 23

wb conmax 1900/2186 48429 339 376 339

Avg. - - 132.89 109.21 63.86

LOOPLock 2.0. However, in our locking approach, we use key
gates M3 and M4 to hide the position of the real nb. While
applying the unlocking approach [4] to the locked circuit in
Fig. 2(e), it first finds out the position of nb by propagating
the fault effects from the pre-MUX. For the Type-I cycle pair,
the fault effect is propagated from M1. The output value of
M3 is assigned a constant 1, and then the fault effect can be
propagated forward. Thus, n8 is found as nb. Similarly, n14
is found as nb in the Type-III cycle pair. Then the feedback
paths of four cycles (L1, L2, L3, and L4) are all replaced by
constant values. However, breaking the correct combinational
cycle L2 changes the functionality of the circuit. As a result,
the SAT solver cannot find the correct key vector.

It seems that assigning values to M3 and M4 for choosing
a node closer to the pre-MUX can find nb. However, fake nb

can be a node before real nb while constructing the locked
circuit in our approach. If attackers want to identify real nb

for removing non-combinational cycles, they need to assign
the correct key values to K3 and K4 in advance. However,
the correct key values cannot be obtained while the other key
values have not been determined. Thus, the proposed locking
structure is effective to obfuscate attackers.

V EXPERIMENTAL RESULTS

In the first experiment, we show the applicability of our
LOOPLock 3.0, i.e., the quantity of the Type-I and Type-
III cycle pairs that can be constructed in a benchmark. Our
locking approach was implemented in C language with ABC.
The experiments were conducted on an Intel Xeon E5-2650v2
2.60GHz CentOS 6.10 platform with 64GBytes memory. The
experimental results are summarized in Table I. Column 1
lists the benchmark. Columns 2 and 3 list the numbers of PIs,
POs, and nodes in each benchmark. Columns 4 and 5 show the
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TABLE II
RESULTS OF OUR APPROACH ABOUT AREA-DELAY-PRODUCT (ADP).

Benchmark |Lock| |Node| |L Node| |Level| |L Level| ADP
aes core 5 21513 21642 (1.01) 26 70 (2.69) 2.71

b17 5 52920 53027 (1.00) 43 52 (1.21) 1.21

b20 5 12219 12323 (1.01) 66 91 (1.38) 1.39

b21 5 12782 12887 (1.01) 67 77 (1.15) 1.16

b22 5 18488 18598 (1.01) 69 87 (1.26) 1.27

C1908 5 414 513 (1.24) 32 92 (2.88) 3.56

C3540 5 1038 1132 (1.09) 41 65 (1.59) 1.73

C432 5 206 309 (1.50) 42 84 (2.00) 3.00

C5315 5 1773 1885 (1.06) 38 89 (2.34) 2.49

C7552 5 2074 2173 (1.05) 29 69 (2.38) 2.49

dalu 5 1740 1820 (1.05) 39 44 (1.13) 1.18

des area 2 4857 4895 (1.01) 33 45 (1.36) 1.37

i10 5 2673 2775 (1.04) 51 64 (1.25) 1.30

i2c 2 1306 1334 (1.02) 16 20 (1.25) 1.28

i8 5 3310 3410 (1.03) 27 27 (1.00) 1.03

mem ctrl 5 15641 15729 (1.01) 36 44 (1.22) 1.23

pci brdge32 5 24369 24449 (1.00) 31 32 (1.03) 1.04

pci spoci ctrl 5 1451 1548 (1.07) 19 63 (3.32) 3.54

rot 5 1063 1165 (1.10) 51 61 (1.20) 1.31

s13207 5 2719 2824 (1.04) 34 41 (1.21) 1.25

s38417 5 9219 9293 (1.01) 30 37 (1.23) 1.24

s38584 5 12400 12498 (1.01) 36 50 (1.39) 1.40

s9234 5 1958 2063 (1.05) 36 59 (1.64) 1.73

sasc 3 784 839 (1.07) 9 27 (3.00) 3.21

systemcaes 5 13054 13150 (1.01) 47 55 (1.17) 1.18

tv80 5 9609 9708 (1.01) 52 52 (1.00) 1.01

usb funct 5 15894 15894 (1.00) 27 50 (1.85) 1.85

wb conmax 5 48429 48536 (1.00) 27 74 (2.74) 2.75

number of identified Type-I and Type-III cycle pairs. Column 6
shows the number of identified locking structures, which is the
smaller value between Columns 4 and 5. The average number
of identified locking structures in a benchmark is 63.86.
Although the locking structures are rare to be constructed in
some benchmarks such as des area, i2c, and sasc, inserting
one locking structure is enough to defend against SAT Attack,
CycSAT, BeSAT, and [4]. More locking structures elevate the
security level of locked circuit as the number of key inputs
increases.

The second experiment is to show the overhead of locked
circuit in our approach as summarized in Table II. Columns 1
and 2 list the benchmark and the number of locking structures
in the locked circuit. Five locking structures are constructed
at most for a benchmark. Since each locking structure has
four key inputs, inserting five locking structures results in the
total number of key inputs of 20. Hence, the locked circuit
is still invulnerable to the brute-force approach. Columns 3
and 4 show the number of nodes in the original circuit and
the corresponding locked one. The data in parentheses is the
ratio of node count between the locked circuit and the original
one. Although we insert five MUXes as key gates and some
auxiliary logic for each locking structure, the area overhead is
still low in most benchmarks. Columns 5 and 6 show the levels
of the critical path in the original circuit and the corresponding
locked one. The delay of the locked circuit is affected as the
locking structure is inserted on the critical path. The level
of the locked circuit increases a lot for some benchmarks,
like pci spoci ctrl and sasc, but this value is intact for some
benchmarks, like i8 and tv80. This result shows that the timing
overhead is structurally dependent. The last column shows the
Area-Delay-Product (ADP) result, which is the product of the
ratios in node count and level. Our locking approach trades the
area and delay for improving the security level of the circuit.

For the last experiment, we applied four unlocking methods
on the circuits locked by our approach. The time limit in this
experiment is set to 10 hours. The results are summarized
in Table III. Columns 1 and 2 list the benchmark and the
number of locking structures. Column 3 displays the time
spent on locking these circuits. Columns 4 and 5 show the
required CPU time and the results after applying the state-
of-the-art [4]. The unlocking approach cannot find the correct
position of nb to remove all the non-combinational cycles in
the locked circuit; therefore, the non-combinational effects in
the POs still invalidate the attack. Columns 6 and 7 show the
required CPU time and the results after applying SAT Attack.
The non-combinational cycles in the locking structures trap
the SAT Attack into an infinite loop or terminate the SAT
Attack without any result. Columns 8∼11 show the required
CPU time and the results after applying CycSAT and BeSAT.
Most of the results are “No Result” and “Wrong Key.” This
is because the constructed NC conditions in CycSAT and
BeSAT, which prune out all the non-combinational cycles,
prevent the SAT solver from returning correct key vectors.
The result of “out of memory” occurred when applying BeSAT
on pci bridge32. This is because BeSAT kept recording the
found DIPs and appending the constraints to the CNF formula.
If the memory is enough, BeSAT still could not get the
correct key vector as the other benchmarks. According to
Table III, we know that our locking approach is effective to
defend against the state-of-the-art [4], SAT Attack, CycSAT,
and BeSAT. Furthermore, since the locations of target nodes
are invisible to attackers after removing the locking structures,
Removal Attack cannot easily unlock our circuit by removing
the locking structures.

VI CONCLUSION

In this work, we propose a robust cyclic logic locking
structure LOOPLock 3.0, which enhances the security level of
the locked circuit. Our locking approach effectively defends
against the state-of-the-art, SAT Attack, CycSAT, BeSAT, and
Removal Attack.
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